- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nikolau, Basil J. (2)
-
Stenback, Kenna E. (2)
-
Campbell, Alexis (1)
-
Campbell, Alexis A. (1)
-
Cothron, Samuel (1)
-
Fang, Wei (1)
-
Flyckt, Kayla S. (1)
-
Hoang, Trang (1)
-
Li, Ling (1)
-
Meng, Yan (1)
-
Spalding, Martin H. (1)
-
Stessman, Dan (1)
-
Tanvir, Rezwan (1)
-
Tonsager, Andrew J. (1)
-
Wan, Dongli (1)
-
Wang, Lei (1)
-
Wang, Yingjun (1)
-
Zhang, Jinjiang (1)
-
Zheng, Wenguang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Eukaryotes express a multi-component fatty acid elongase to produce very long chain fatty acids (VLCFAs), which are building blocks of diverse lipids. Elongation is achieved by cyclical iteration of four reactions, the first of which generates a new carbon–carbon bond, elongating the acyl-chain. This reaction is catalyzed by either ELONGATION DEFECTIVE LIKE (ELO) or 3-ketoacyl-CoA synthase (KCS) enzymes. Whereas plants express both ELO and KCS enzymes, other eukaryotes express only ELOs. We explored the Zea mays KCS enzymatic redundancies by expressing each of the 26 isozymes in yeast strains that lacked endogenous ELO isozymes. Expression of the 26 maize KCS isozymes in wild-type, scelo2 or scelo3 single mutants did not affect VLCFA profiles. However, a complementation screen of each of the 26 KCS isozymes revealed five that were capable of complementing the synthetically lethal scelo2; scelo3 double mutant. These rescued strains express novel VLCFA profiles reflecting the different catalytic capabilities of the KCS isozymes. These novel strains offer a platform to explore the relationship between VLCFA profiles and cellular physiology.more » « less
-
Wang, Lei; Tonsager, Andrew J.; Zheng, Wenguang; Wang, Yingjun; Stessman, Dan; Fang, Wei; Stenback, Kenna E.; Campbell, Alexis; Tanvir, Rezwan; Zhang, Jinjiang; et al (, Frontiers in Plant Science)We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene,Qua-Quine Starch(QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species.QQSmodulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developingChlamydomonas reinhardtiiandSaccharomyces cerevisiaestrains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression ofQQSinC. reinhardtiimodulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies inS. cerevisiaerevealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, inS. cerevisiaeboth the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes.more » « less
An official website of the United States government
